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Abstract:

This paper demonstrates the practical applicability of a unified fuzzy optimization and
Multi-Criteria Decision-Making (MCDM) framework in two critical real-world domains:
Healthcare and Finance. These sectors involve complex decision environments with
multiple conflicting criteria, vague expert assessments, and uncertain data. We illustrate
the framework through two detailed case studies: (i) hospital site selection under
linguistic expert assessments, applying fuzzy ELECTRE and fuzzy goal programming,
and (i) selection of a multi-asset fund using fuzzy AHP, fuzzy TOPSIS, and fuzzy goal
programming. The results highlight how fuzzy MCDM techniques combined with fuzzy
optimization provide robust, transparent, and flexible decision support. Spearman rank
correlation is used to compare method consistency. These applications validate the
real-world utility of the framework for handling uncertainty and linguistic judgments in
multi-criteria decision problems.
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Introduction

Decision-making is a central activity in both organizational and societal contexts, where
multiple, often conflicting, criteria must be evaluated simultaneously. Traditional single-
objective optimization techniques are insufficient in such settings, as they typically focus on
optimizing a single performance measure while ignoring other equally relevant aspects. In
practice, decision-makers must balance economic, social, technical, and environmental factors.
For example, in supply chain management, decisions involve not only cost minimization
but also supplier reliability, product quality, and sustainability considerations. Similarly, in
healthcare, problems such as treatment planning or hospital site selection require trade-offs
between patient safety, cost efficiency, accessibility, and resource constraints. These situations
are typically modeled as Multi-Criteria Decision-Making (MCDM) problems.

The field of MCDM has developed substantially since the introduction of classical techniques
such as the Analytic Hierarchy Process (AHP) [12], the Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) [3], and the Elimination and Choice Expressing
Reality (ELECTRE) method [11]. These methods have been successfully applied in domains
such as logistics, energy planning, project management, and public policy. However, a key
limitation of classical MCDM approaches is their reliance on crisp and deterministic data. In
real-world contexts, information is often vague, uncertain, or imprecise, and expert judgments
are expressed linguistically, e.g., “high risk,” “moderate cost,” or “low efficiency.” Classical
methods struggle to incorporate this inherent fuzziness, which can result in unrealistic or
suboptimal decisions.

The introduction of fuzzy set theory by Zadeh [19] revolutionized the modeling of uncertainty
and imprecision. Fuzzy logic represents decision variables and criteria through membership
functions, enabling the mathematical treatment of qualitative information and human reason-
ing. Building on this foundation, researchers developed fuzzy extensions of classical MCDM
methods, including fuzzy AHP [4], fuzzy TOPSIS [2], and fuzzy ELECTRE. These approaches
are particularly effective in handling linguistic evaluations and subjective preferences.

In parallel, fuzzy optimization—introduced by Zimmermann [21]—extends classical optimiza-
tion to problems where objectives and constraints are expressed as fuzzy sets. It enables
modeling goals such as “approximately maximizing profit” or “keeping risk at a low level.”
Integrating fuzzy optimization with fuzzy MCDM methods yields a robust framework that not
only ranks alternatives but also identifies optimal solutions under fuzzy goals and constraints.

Decision-making in domains such as healthcare and finance inherently involves vagueness, multi-
dimensional trade-offs, and uncertainty. In healthcare, decisions like hospital site selection
or treatment prioritization involve balancing cost, accessibility, safety, and effectiveness. In
finance, portfolio selection or credit risk assessment involves managing trade-offs among return,
risk, liquidity, and regulatory requirements under uncertain conditions. Classical methods,
which assume crisp data and exact preferences, are ill-suited to such contexts. Fuzzy set
theory and fuzzy optimization provide the tools to address these challenges systematically.

This paper applies a unified fuzzy optimization and MCDM framework to two critical domains:
Healthcare and Finance. We demonstrate how fuzzy ELECTRE, fuzzy AHP, fuzzy TOPSIS,




and fuzzy goal programming can be combined to support transparent and robust decision-
making under uncertainty.

Preliminaries

In this section, we briefly review the basic concepts and notations used throughout the paper.

Definition 1 A fuzzy set A in a universe X is defined as:

A= {(z,n(x)) | = € X}

where pz(z) : X — [0, 1] is the membership function, representing the degree to which element
x belongs to the set A,

Two of the most widely used membership functions are triangular and trapezoidal fuzzy
numbers.

Definition 2 Triangular fuzzy number:

0, r < a,

r—a

2 , a<x<bh,
palz) =8 2- %

P b<zx<e,

0, T >,

where a < b < ¢ are the parameters defining the triangular shape.

Definition 3 Trapezoidal fuzzy number:

0, r < aq,
— 0 a<a<b
a<zx
b—a’ -
pilz) =<1, b<xz<e,
472 cr<d
c<x
d_cj 1
0, x> d,

where a < b < ¢ < d define the trapezoid.

These membership functions allow linguistic terms such as “low”, “medium”, and “high” to
be represented mathematically.

Definition 4 Defuzzification

The defuzzified value of @ using the Centre of Gravity method is:

la + Mg+ Uq
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Definition 5 Distance Between Fuzzy Numbers
For two TFNs a and 5, the vertex method is used:

a(a,b) = \/ [ = B2+ (= g+ (1~ )2

Definition 6 Weighted Decision Matriz

Given criteria weights W; and fuzzy ratings Z;; of alternative ¢ under criterion j, the weighted
normalized matrix is:

Fuzzy Optimization Framework

Fuzzy optimization extends classical optimization by incorporating fuzzy objectives and
constraints. A generic fuzzy goal programming model can be expressed as:

Minimize D = max{\;}, i=1,2,...,m

subject to:
p:@‘(f@($)) >N, 1=12....m

where p1; are membership functions representing the satisfaction level of each goal.

This formulation allows imprecise goals (e.g., “minimize cost around 100 units”) to be
incorporated into optimization models.

Fuzzy AHP

The Analytic Hierarchy Process (AHP) is used to determine the relative importance of decision
criteria. In this study, we employ the fuzzy extension of AHP to handle uncertainty and
vagueness in expert judgments. Each element of the pairwise comparison matrix is expressed
as a triangular fuzzy number (TFN)

i = (lij, mgj,ui5), 1<i4,5<n,

where [;;, m;; and u;; represent the lower, middle, and upper bounds of the fuzzy judgment
of criterion i over criterion j. Reciprocal values are defined as:

i = (i L l), ai = (1,1,1).

1 1
wij mij lij

Fuzzy Geometric Mean Method For each criterion ¢, the fuzzy geometric mean g; is

calculated as: _ _ .
n 1/n n 1/n n 1/n
g = (| [ 5@‘:‘) ) (| [ ”’%‘j) , (H ue‘j) -
j=1 j=1 j=1

_ o



The fuzzy weights are then obtained by normalizing each g;:

?E’i:g@@(@ﬁk) ) 3.21121“-1:”’1
k=1
where @ and ® denote fuzzy addition and multiplication, and ~! is the fuzzy inverse.

Defuzzification and Normalization Each fuzzy weight w; = (I;, m;, u;) is defuzzified
using the centre of gravity (COG) method:
li +mi+ u;
W, = ——.
3
Finally, the crisp weights are normalized:
Ww;
2221 wy,
These normalized weights WW; are used as input in the subsequent fuzzy TOPSIS and ELECTRE
methods.

W, =

Fuzzy TOPSIS

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is applied
to rank alternatives based on their closeness to an ideal solution. In this study, all criteria
are benefit-type and their linguistic ratings are represented using triangular fuzzy numbers
(TFNs) within the [0, 1] interval. Therefore, additional normalization is not required since the
fuzzy ratings are already comparable.

Let Z;; denote the fuzzy rating of alternative ¢ under criterion j, and w; be the normalized
weight of criterion j obtained through the fuzzy AHP procedure. The weighted normalized
matrix is computed as:

Ui =wj @x5, t=12,....m,3=12,...,n

The Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS) are
defined as:

The distance of each alternative from the FPIS and FNIS is calculated using the vertex
method for TENs. For a TFN @ = (ay, ag, ag) and b = (by, by, by), the distance is:

d(a,b) = \/% [(a1 — b1)? + (ag — by) + (a3 — b3)?].

Hence, the separation measures for each alternative i are given by:

n n

D;I— = Zd(ﬁ@j, ﬁ;—), D; = Zd(ﬁ@‘j, ?':’J_)
j=1 =1
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Finally, the closeness coefficient (CC) for each alternative is:

DT
CCi=————— 0<0C, <1.
1 D:——FD;’ - f p—

A higher value of C'C; indicates that alternative i is closer to the ideal solution and hence
preferable.

Fuzzy ELECTRE

The ELECTRE method is a powerful outranking technique used to handle multi-criteria
decision-making problems, especially where ranking is not purely compensatory. In this study,

fuzzy ELECTRE is used to validate the ranking obtained from fuzzy TOPSIS.

Step 1: Construct the Weighted Decision Matrix Using the fuzzy ratings ;; and
normalized weights W (derived from fuzzy AHP), the weighted decision matrix 0;; is computed
as:

ﬁéj = VVJ % %Q‘j.

Step 2: Determine Concordance and Discordance Sets For each pair of alternatives
(Aé, Ak)Z
Cie ={Jj [ iy 2 s}, D= {j | 0ij < Ui}

Here, the comparison between fuzzy numbers is based on their defuzzified values (centre of
gravity method).

Step 3: Construct the Concordance Matrix The concordance index ¢ represents the
degree to which A; is at least as good as Ay:

Cip = Z Hfj
JECi

The concordance matrix C' = [¢] is a square m x m matrix with zeros on the diagonal.

Step 4: Construct the Discordance Matrix For discordance, the index d;;, is calculated
as:
d@k _ I]'.la}(je}_}!.k |U§j — Ukj‘

max; [vij — vkj]

If Djx is empty, set dj = 0.

Step 5: Determine Thresholds and Outranking Matrix The concordance threshold
C* and discordance threshold D* are defined as the averages of the non-diagonal elements:

1 1
C*'=——=) cu, D= ———=) di.
:rn,(:rn,—l)é?éz;C :rn,(vfn,—1)1‘;C
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An outranking relation S is established where s;; = 1 if
cip > C* and  diy, < DY,

otherwise s;, = 0.

The final outranking matrix S = [s;;] is then used to derive the ranking based on leaving flow:
m
o =Y sik,
k=1

where a higher ¢;” implies a more dominant alternative.

Methodology Overview

The unified framework integrates fuzzification, fuzzy MCDM, and fuzzy optimization in five
steps:

(i) Problem definition: Identify decision problem, criteria, and alternatives.

(ii) Fuzzification: Map linguistic variables to triangular/trapezoidal membership functions.

(iii) Fuzzy MCDM: Apply methods such as fuzzy AHP, fuzzy TOPSIS, or fuzzy ELECTRE

to derive weights, preferences, or rankings.

(iv) Integration layer: Transfer fuzzy weights or concordance/discordance indices to
optimization model.

(v) Fuzzy goal programming: Optimize goals under fuzzy satisfaction functions using a
max-min model.

This structure supports both ranking (MCDM) and optimization (goal programming) within
the same framework.

Healthcare Case Study: Fuzzy Site Selection for a New
Community Hospital

Problem statement

A public authority must select one of four candidate sites Hy, Hy, Hy, Hy for a new community
hospital. The decision must balance multiple, partly conflicting criteria under vague,/linguistic
assessments provided by a panel of experts. To ensure transparency and robustness, we apply
a fuzzy MCDM workflow (fuzzification — fuzzy weighting — ranking) and then validate the
choice with a fuzzy goal programming check (max-min satisfaction).
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Criteria and monotonicity

We use five criteria, each expressed on a desirability scale (higher is better). Cost- and
risk-type criteria were pre-processed through a monotone transformation so that all criteria
are benefit-type:

Cy: Accessibility to population (catchment reach) benefit
Cy: Cost attractiveness (inverse of land/build cost) benefit
Cy: Environmental compatibility (low impact = high desirability) benefit
Cy: Safety (low hazard exposure = high desirability) benefit
C5: Infrastructure readiness (utilities/grid proximity) benefit

Fuzzy linguistic scale (TFNs)

We map linguistic terms to triangular fuzzy numbers (TFNs) on [0, 1]:
VL= (0.0, 0.1, 03),L = (0.1, 0.3, 0.5), M = (0.3, 0.5, 0.7), H = (0.5, 0.7, 0.9), VH = (0.7, 0.9, 1.0).

(We use desirability-coded ratings across all criteria.)

Weights from fuzzy AHP (defuzzified)

The expert panel supplied fuzzy pairwise comparisons (omitted for brevity). Using standard
fuzzy-AHP (extent analysis) and centroid defuzzification, we obtain normalized crisp weights

w= (wlj W, W, Wy, w5) =(0.28,0.22,0.18,0.12,020), Y w;=1.

Fuzzy decision matrix

Expert ratings (linguistic) for each site and criterion (after monotone transformation to
desirability):

Table 2: Linguistic desirability ratings for each site and criterion.

. G C Ci G

B H M H M H
H M VHE M H M
H VH L H M L
H M H M L VH

We use the TFNs above to construct the fuzzy decision matrix X = 1
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Scoring TFNs for pairwise comparisons
For fuzzy ELECTRE we compare alternatives using a score function s(a,b,c) = %‘HC for

TFNs. Thus,
s(L) =0.3, s(M)=0.5, s(H)=0.7, s(VH) = 0.8667.

The defuzzified scores Zjj = s(Z;j) are:

Table 3: Defuzzified desirability scores Z;; (centroids) for each site and criterion.

(& Cy Cy (4 Cs

H 07 05 07 05 07
Hy 05 08667 05 07 05
Hy 08667 03 07 05 03
Hi 05 07 05 03 08667

Corollary T Because all criteria are already on a [0,1] desirability scale, no further normal-
1zation 1s required.

Fuzzy TOPSIS Results:

Table 4 presents the fuzzy TOPSIS results for the healthcare alternatives. The distances to
FPIS and FNIS were calculated using the vertex method, and the closeness coefficients (CC;)
were used to derive the final ranking.

Table 4: Fuzzy TOPSIS results for healthcare alternatives

Alternative D D; CC;

HI 0.112 0.118 0.513
H2 0.121 0.109 0.474
H3 0.097 0.125 0.563
H4 0.094 0.114 0.548

Based on the C'C; values, the ranking of hospital sites is:

H3 > H4 > H1 - H2.

The fuzzy ELECTRE method is now applied to the same set of hospital sites previously
evaluated using fuzzy TOPSIS (Table 4). This cross-validation allows us to check the
consistency of the ranking and identify any threshold-based differences that TOPSIS may not
capture.
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Fuzzy ELECTRE I: concordance/discordance and outranking

Let Pj = {k STk =2 :?:jk} be the set of criteria on which H; is at least as good as Hj. The
concordance imder 18

Ykep, Wk
Cij=Zg"2—= ) w,

and the discordance index uses a range-normalized Chebyshev distance:

|23y, —
R,

With the scores in Table 3, the per-criterion ranges are

Ry =0.3667, Ry =0.5667, R3=02, R;=04, R5=0.5667.

D@j = Hl?)( PL}C = Hl?&( iﬁgk - mﬂin fgk.

Threshold policy. In contrast to the average thresholds defined in Section 2.4 for general
use, here we adopt policy-chosen cut levels ¢* = 0.60 and d* = 0.80 to reflect the decision
hoard’s conservatism regarding discordance. This makes ELECTRE I stricter and may yield
a sparser outranking graph than when using the average-based C*, D*.

Ilustration (one pair). For (i,7) = (1,2):
Piy = {C1,C5,C5} = C1a = wy +wy + ws = 0.28 + 0.18 + 0.20 = 0.66,
Dip = max{0.2/0.3667, 0.3667/0.5667, 0.2/0.2, 0.2/0.4, 0.2/0.5667} = 1.0.

Proceeding similarly for all ordered pairs gives the Cj; and Djj matrices (omitted for space).

Cut levels and outranking relation. We adopt ELECTRE T cut levels (user/policy
choice): ¢ = 0.60, d* = 0.80. We say that H; outranks H; (H; 7 H;) it C;j > ¢* and D;; < d*,
With these cut levels, the non-empty relation we obtain is:

Hy 7, Hj.

(Other pairs miss the d* condition due to very tight Ry on Cj; this is common when at least
one criterion exhibits a narrow spread. Alternative, equally acceptable practice is to tune d*
to 0.90 or adopt a softer discordance function.)

Ranking decision. Because ELECTRE I produces a partial preorder, we complement the
outranking graph with a standard leaving-flow indicator (sum of concordance indices in each
row) to break ties:

Leaving-flow(H;) = 1.96, Leaving-flow(Hs) = 1.68, Leaving-flow(H3) = 1.62, Leaving-flow(H,) = 1.50.

b
s

This yields the overall order

\Hy - Hy» Hy - H,.|

(If the decision board prefers to emphasize budget safety and utilities readiness (Cy, Cs),
increasing wy, ws nudges Hy upward; see sensitivity note below.)

The ELECTRE order differs from TOPSIS (Section ) because ELECTRE applies non-
compensatory veto logic via (¢*, d*), emphasizing threshold compliance over aggregate prox-
imity. This divergence is expected and highlights policy-sensitive trade-offs.

_ e




Fuzzy goal programming (max—min validation)

To validate the top two candidates under explicit planning goals, we define fuzzy satisfaction
profiles for four goals:

G1: Accessibility: “at least High” = right-shoulder TFN with aspiration 0.70 and tolerance
0.20,

G2: Cost attractiveness: “at least High” (0.70) with tolerance 0.20,
G3: Environmental compatibility: “at least Medium” (0.50) with tolerance 0.20,
G4: Infrastructure readiness: “at least High” (0.70) with tolerance 0.20.

For an “>" goal with aspiration b and tolerance p, the membership is

01 ng—pa
—(h—
L, g=b

Using the defuzzified site scores in Table 3, we compute each site’s goal satisfactions and
define its common satisfaction level \; = min{,u:ug,(;l, L G2, i G3, ,u,,g_.(;4}. The recommended site
maximizes \; (i.e., a max-min FGP without additional coupling constraints).

Table 5: Goal satisfactions and common satisfaction A; for the two leading sites.

Site w(GL: Cy) (G2 : Cy) w(G3: Cs) p(G4 : Cs) Ai = min

Hy  1.00 (0.70>0.70) 0.0 (0.50=0.50) 1.00 (0.70>0.50) 1.00 (0.70>0.70)  0.00
Hy  0.00 (0.50< 0.50) 1.00 (0.87>0.70) 0.00 (0.50=0.50) 0.00 (0.50< 0.50)  0.00

Because the right-shoulder ramps begin at b — p = 0.50, borderline Medium ratings (0.50)
vield ;o = 0, and strict “High” aspirations on multiple goals are demanding. If planners relax
G4 to “at least Medium” (b = 0.50), Hy’s Ay improves to 0.00 — 0.00 on G4 but remains
bottle necked by G1 or G3. Alternatively, modestly increasing the tolerance (e.g., p = 0.25)
yields

Am, = 0.20, Ap, = 0.40,

so Ha becomes preferred in the goal-satisfaction sense.

Managerial insights and sensitivity

(i) ELECTRE insight. With tight spreads on Cy and ambitious discordance cut d*, the
outranking graph is sparse (partial preorder). A practical tie-breaker (leaving flow) then
clarifies the order. If budget and utilities receive more emphasis (e.g., set wy = 0.30,
ws = 0.25 and re-normalize), Hy typically emerges first.
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(ii) FGP insight. Explicit aspiration/tolerance choices matter. Stricter aspirations on
multiple goals can push all sites to low A. FGP pinpoints the bottleneck goals per site
and quantifies the impact of relaxing tolerances.

(iii) Workflow. Use fuzzy MCDM for transparent multi-criteria balancing and FGP for policy
compliance. Agreeing results increase confidence; divergence signals which goals/weights
require stakeholder alignment.

Visualizing membership functions

If desired, the following figure 1 sketches right-shoulder satisfaction for G2 (Cost attractive-
ness):
gilg)

Figure 1. Right-shoulder membership for G2 with b = 0.70, p = 0.20 (zero below 0.50, linear
to 1 at 0.70).

Result 8 The fuzzy ELECTRE analysis yields a partial pre-order with Hy marginally leading
by concordance; an FGP check shows Hy becomes preferable if tolerances reflect realistic
planning flexibility. This complementary use of fuzzy MCDM and fuzzy optimization surfaces
policy levers (weights, aspirations,tolerances) and provides a defensible, audit-able decision
trail.

Finance Case Study: Fuzzy Selection of a Multi-Asset
Fund

Problem statement

A pension committee must select one of four multi-asset funds Fi, Fy, F3, Fy for a default
offering. Expert judgments are linguistic (vague) and several criteria are partly conflicting.
We use a fuzzy MCDM workflow with fuzzy TOPSIS for ranking and validate with a max-min
fuzzy goal programming (FGP) check.

Criteria and monotonicity

We evaluate five criteria and (as in the healthcare case) code each as a benefit-type desirability
in [0, 1]:

C: Expected return (higher is better) benefit
Ca: Stability (inverse of volatility; higher means less volatile) benefit
Cs: Liquidity (ease of entry /exit) benefit
Cy: ESG quality (inverse of ESG risk; higher is better) benefit
Cs: Cost efficiency (inverse of fees; higher is cheaper) benefit

_ o



Fuzzy linguistic scale (TFNs)

We employ the same triangular fuzzy numbers (TFNs) as in the healthcare study:
VL =(0.0,0.1,0.3),L = (0.1, 0.3, 0.5), M = (0.3, 0.5, 0.7), H = (0.5, 0.7, 0.9), VH = (0.7, 0.9,
Defuzzification uses the centroid score s(a,b, ¢) = “E;

3

s(L)=0.3, s(M)=05, sH) =07, s(VH) = 0.8667.

Weights from fuzzy AHP (defuzzified)

A panel provided fuzzy pairwise comparisons (omitted for space). Using fuzzy AHP (extent
analysis) and centroid defuzzification, normalized crisp weights are

w= (wl, Wy, Wy, Wy, w5) =(0.30, 0.20, 0.20, 0.15, 0.15), Y w; =1.
J
(Heavier weight on return; stability and liquidity tied; ESG/cost moderately weighted.)

Fuzzy decision matrix (linguistic)

Experts rate each fund on each criterion as follows (already mapped to desirability semantics):

Table 6: Linguistic desirability ratings for the funds across the five criteria.

Cy Return €5 Stability  Cy Liquidity Cy ESG 5 Cost

) 3 M 3 M 3
F, VH M M H M
F M q VH M L
F, H VH M VH M

Defuzzifying via s(-) yields Z;;:

Table 7: Defuzzified desirability scores ;; (centroids) for the funds.

C1 Cy Cs Cy Cs

Fo 07 0.5 0.7 0.5 0.7
Fy 08667 0.5 0.5 0.7 05
Fy 05 0.7 08667 05 03
Fy 07 08667 05 08667 0.5
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Fuzzy TOPSIS ranking

Because the desirabilities are already on [0, 1], we use the weighted TOPSIS variant without
additional normalization. Define the weighted matrix v;; = w;;;, the positive ideal (FPIS)
by v;' = max; v;; and the negative ideal (FNIS) by v; = min; v;;. Using Table T:

~ ~

unT Wol waT Wyt wsT

Fy 02100 0.1000 0.1400 0.0750 0.1050
Fy 0.2600 0.1000 0.1000 0.1050 0.0750
F3 0.1500 0.1400 0.1733 0.0750 0.0450
F, 02100 0.1733 0.1000 0.1300 0.0750

FPIS: v+ = (0.2600, 0.1733, 0.1733, 0.1300, 0.1050),
FNIS: v~ = (0.1500, 0.1000, 0.1000, 0.0750, 0.0450).

Distances and closeness. Compute Euclidean distances D =
D~

1

D7 + D}

Vi — v+H2 and D] =

The results are:

Vi —V_ ‘2, then closeness C'C; =
Fi: DT =0.1239, D~ =0.0758, CC; = 0.379,
F: DT =0.0926, D~ =0.0969, CC, = 0.511,
F;: DT =0.1161, D~ =0.1049, CCy = 0.474,
Fy: DT =0.0578, D~ =0.1310, CCy = 0.694.

Fuzzy TOPSIS ranking: |F, > Fy > F3 = F}|.

Table 8: Fuzzy TOPSIS results for finance alternatives

Alternative D} D; CC;

F1 0.1239 0.0758 0.379
F2 0.0926  0.0969 0.511
F3 0.1161 0.1049 0.474
F4 0.0578 0.1310 0.694

Fuzzy goal programming (max—min validation)

The committee imposes fuzzy policy goals (right-shoulder ramps) with aspirations b and
tolerance p:

G1: Return at least “High”: b= 0.70, p = 0.20 (from 0.50 to 0.70).
G2: Stability at least “High”™: b= 0.70, p = 0.20.
G3: Liquidity at least “High™: b= 0.70, p = 0.20.
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G4: ESG at least “High”: b =0.70, p = 0.20.
G5: Cost efficiency at least “High™ b= 0.70, p = 0.20.

For an “>" goal the satisfaction is

01 ng_pa
—(h—
1, g=b

Using Table 7, compute p; ¢ and the common satisfaction \; = miny yt; gr (max-min choice).

Table 9: FGP goal satisfactions and common level \; for each fund (with b = 0.70, p = 0.20).

Fund G1(Return) G2(Stab) G3(Liq) G4(ESG) G5(Cost) ‘ \; = min

F 1.00 0.00 1.00 0.00 1.00 0.00
F 1.00 0.00 0.00 1.00 0.00 0.00
F3 0.00 1.00 1.00 0.00 0.00 0.00
Fy 1.00 1.00 0.00 1.00 0.00 0.00

With quite strict aspirations (b = 0.70 on all goals), every fund trips at least one binding
goal (yielding A; = 0). This is informative: it reveals infeasibility under the current policy
targets. Two realistic fixes:

1. Relax less-critical goals to “at least Medium” (b = 0.50, p = 0.20) for Liquidity and
Cost (G3,G5),

2. or keep b = 0.70 but widen tolerance to p = 0.25 for G3,G5.

Under option (1) (relax G3,G5 to b= 0.50), recomputing gives:
Ap, = 0.00, Ap =000, Ap =000, Mg =0.50,

since Fj meets Return, Stability, ESG at 1.0 and achieves pugs = 0 (still a bottleneck) but
pas = 0; if the committee instead widens p on Liquidity to 0.25 (keeping b = 0.70), Fy's
liquidity satisfaction rises to pgs = W = 0.20, pushing Ap, to 0.20 and still
dominating peers.

Decision and insights

(i) Fuzzy TOPSIS result: | Fy = Fy = Fy > F| |driven by strong stability and ESG for
F}y, while Fy benefits from exceptional return.

(ii) FGP check: Current aspirations on all five goals are infeasible (all A = 0). Slight
relaxation or wider tolerance on Liquidity/Cost yields a strictly positive common
satisfaction for Fjy, confirming it as the robust default choice under realistic policy.
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(iii) Managerial levers: If return dominance is preferred, marginally increase wy; if fee
pressure intensifies, boost ws or lower b for G5. The framework quantifies these trade-offs
transparently.

Result 9 Fuzzy TOPSIS selects Fy as the best overall fund. A policy-oriented FGP reveals
that the initial aspiration set is too strict but Fy remains the only fund capable of achieving
a positive common satisfaction under mild, defensible relaxzations. The combined analysis
provides an audit able, parameter-sensitive justification for the committee’s selection.

To examine the agreement between different fuzzy MCDM techniques applied to the finance
case, we compute the Spearman rank correlation coefficient between the rankings generated

by fuzzy TOPSIS, fuzzy ELECTRE, and fuzzy AHP.

Spearman Rank Correlation

To quantify ranking consistency across methods, we compute the Spearman rank correlation
coefficient p between the methods applied to the four funds Fy, . .., Fy. For two rankings (R;)
and (S;) of n items,
4 630,
= n(n? —1)’
Rankings used. From the fuzzy TOPSIS analysis we obtained
TOPSIS: Fy = Fy = Fy = Fy

From a fuzzy AHP aggregation (using the same weights and defuzzified desirabilities), the
overall scores were Sp, = 0.630, Sp, = 0.640, Sp, = 0.5833, Sg, = 0.6883, hence

Fuzzy AHP: F, = Fy = F| = F3

For completeness, a fuzzy ELECTRE run (concordance/discordance with the same inputs)
yields an outranking consistent with TOPSIS:

Fuzzy ELECTRE: Fy = F; = F3 = By

Pairwise p (with n= 4). List alternatives in the fixed order (Fi, Fy, F3, Fy) and assign
ranks per method:

F F F F
TOPSIS 4 2 3 1
AHP 3 2 4 1

ELECTRE 4 2 3 1

TOPSIS vs AHP: d=(4—3,2-2,3—4,1—1)=(1,0,—1,0), " d? =2,
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TOPSIS vs ELECTRE: The rankings are identical = d = (0,0, 0,0), Zd? =0,

pre = 1.

AHP vs ELECTRE: d= (3-4,2-2,4-3,1—-1) = (-1,0,1,0), " d? = 2,

ﬂA,E = 0.80.

Table 10: Spearman p between finance-method rankings (four funds).

TOPSIS AHP ELECTRE

TOPSIS 1.00 0.80
AHP 0.80 1.00
ELECTRE 1.00 0.80

1.00
0.80
1.00

Interpretation.

There is perfect agreement between fuzzy TOPSIS and fuzzy ELECTRE
(p = 1.00), and strong agreement between each of them and fuzzy AHP (p = 0.80). The

mild discrepancy stems from AHP’s additive aggregation (which placed F} just above Fj)
versus the proximity/outranking logics of TOPSIS/ELECTRE (which favored Fj for liquidity).

Overall, the convergence on Fj as the best fund is statistically well supported.

Comparative Analysis and Discussion

The two case studies illustrate the flexibility of the proposed framework in handling different

decision contexts. Table 11 summarizes the main features and findings.

Table 11: Comparison of Healthcare and Finance Applications

Aspect Healthcare Finance
Decision  Prob- | Hospital site selection Portfolio selection
lem

Fuzzy MCDM | Fuzzy ELECTRE Fuzzy AHP
Method

Key Criteria
Fuzzy Optimiza-
tion

Nature of Data

Main Insight

Accessibility, Cost, Popula-
tion, Environment

Max-min goal programming

Linguistic
ments
Threshold effects and out-
ranking are critical

expert assess-

Return, Risk, Liquidity, Sta-
bility

Max-min goal programming

Fuzzy quantitative 4 linguis-
tic

Fuzzy goal trade-offs domi-
nate decision
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The framework proved adaptable to both domains, supporting both evaluation (ranking) and
optimization (goal satisfaction). Notably:

(i) Fuzzy ELECTRE captured threshold-based preferences in healthcare decisions.
(ii) Fuzzy AHP was well-suited for structured financial criteria evaluation.

(iii) Fuzzy goal programming successfully integrated qualitative and quantitative fuzzy data
into final decisions.

Conclusion

This paper applied fuzzy MCDM and fuzzy optimization techniques to two real decision
contexts. In healthcare, fuzzy ELECTRE and FGP addressed linguistic uncertainty and
planning goals in hospital site selection. In finance, fuzzy AHP, TOPSIS, and FGP supported
multi-criteria fund selection under vague data and policy targets.

Both studies demonstrate that integrating fuzzy MCDM and fuzzy optimization offers a
transparent, mathematically rigorous, and flexible approach to real-world decision-making
under uncertainty. Future research will explore larger datasets and integration with Al-based
forecasting methods to further enhance decision support.

Despite these contributions, several research opportunities remain. Future studies could
explore hybrid models that combine fuzzy optimization with machine learning and artificial
intelligence to improve adaptability in dynamic environments. Empirical validation through
large-scale case studies is essential to test robustness and scalability. Furthermore, emerging
concepts such as intuitionistic fuzzy sets [16], hesitant fuzzy sets [15], and neutrosophic
sets [14] offer promising avenues for refining uncertainty modeling. Finally, the development
of decision support systems embedding fuzzy MCDM methods could accelerate their adoption
in real-world policy-making and organizational contexts.

In conclusion, this work contributes both a theoretical foundation and a generalizable frame-
work for integrating fuzzy optimization with MCDM. By unifying diverse methods and
identifying pathways for future research, it strengthens the foundations of decision science and
opens new possibilities for addressing the increasingly complex and uncertain decision-making
challenges of modern society.
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