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Abstract:

Boolean rings and matrix rings represent two distinct yet foundational structures in ring theory, each
contributing uniquely to both theoretical and applied mathematics. Boolean rings, characterised by
idempotent elements and characteristic two, offer a categorical equivalence to Boolean algebras and model
logical operations algebraically. Their structure is inherently simple yet powerful, providing critical insights
in digital logic design, error-correcting codes, and cryptographic systems. On the other hand, matrix rings
generalise classical linear algebra by encapsulating higher-dimensional operations over arbitrary rings.
They reveal rich non-commutative behaviour, ideal structures, and fundamental decomposition theorems
such as Wedderburn’s. This paper explores original results about idempotent sums, zero-divisors, and
quotient properties in Boolean rings, as well as structural theorems in matrix rings including trace-rank
equivalence, invertibility, and ideal generation. lllustrative examples and diagrams support key identities,
making abstract properties more tangible. The interplay between these rings demonstrates the versatility of
ring theory in bridging abstract algebra, logic, and linear transformation frameworks. Through these
investigations, this work contributes novel perspectives and self-contained theorems, advancing the

understanding of these classical algebraic objects in a modern context.

Keywords: Boolean Ring, Matrix Ring, Idempotent Element, Non- Commutativity, Ring Theory, Zero-
Divisor.

1. Introduction:

The study of algebraic structures has long stood at the heart of mathematical abstraction, with
ring theory playing a pivotal role in unifying various branches of pure and applied mathematics.
Among the numerous varieties of rings, two particularly compelling and structurally rich
classes are Boolean rings and matrix rings. Though they originate from different conceptual
motivations— logical algebra and linear algebra respectively— they each offer unique
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insights into the architecture of algebraic systems and have widespread relevance across mul-
tiple disciplines.

A Boolean ring is a commutative ring with identity in which every element is idempotent,
that is, for any a in the ring, a®> = a. This property implies that Boolean rings have char-
acteristic two and are closely aligned with the structure of Boolean algebras, making them
integral to discrete mathematics and theoretical computer science.

Boolean rings are particularly significant due to their capacity to model logical opera-
tions algebraically. This makes them highly applicable in the design and simplification of
digital circuits, where they support efficient minimisation of logical expressions. Their inher-
ent algebraic properties facilitate the analysis and synthesis of switching circuits, which are
foundational in hardware design such as memory chips and processors.

In coding theory, Boolean rings provide a robust framework for constructing and analysing
error-detecting and error-correcting codes. These structures enable the development of mech-
anisms to identify and rectify errors in digital communication systems, thereby ensuring data
integrity.

Moreover, the theoretical properties of Boolean rings lend themselves well to cryptographic
applications, particularly in the design of secure encryption protocols and hashing algorithms.
Their simplicity, combined with their algebraic richness, allows for constructing secure and
efficient systems in information security:.

Overall, Boolean rings not only strengthen the theoretical backbone of algebraic logic but
also impact practical technological developments. As computational systems become more
complex, the relevance of Boolean structures in ensuring efficiency and security continues to
grow.

Beyond their foundational role in logic, Boolean rings exhibit elegant internal symmetries.
They contain no non-trivial units besides the multiplicative identity, their ideals reflect set-
theoretic inclusions, and their quotient structures preserve idempotency. These properties
make Boolean rings excellent tools for studying lattice-theoretic models, Stone duality, and
topological concepts such as clopen sets in compact Hausdorff spaces. Recent investigations
have further uncovered structural theorems, such as those classifying finite Boolean rings as
direct products of Zs, as well as novel results on their ideal lattices, annihilators, and quotient
behaviours.

The concept of matrix rings traces back to the foundational work of 19*'-century math-
ematicians such as Arthur Cayley and James Joseph Sylvester, who formalised the theory
of matrices and laid the groundwork for matrix algebra. In classical linear algebra, matrices
are primarily studied over fields such as R and C. However, the study of matrices can be
extended beyond fields to more general algebraic structures known as rings.

A matriz ring is defined as a ring whose elements are matrices with entries from a given
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ring R, and operations of addition and multiplication follow the usual matrix rules. These
rings, typically denoted as M, (R), where n is the matrix size, play a pivotal role in un-
derstanding the structure of linear transformations, module theory, and non-commutative
algebra. Matrix rings generalise scalar rings, incorporating higher-dimensional representa-
tions and enabling deeper exploration into ideals, homomorphisms, and ring extensions. They
also serve as fundamental examples in areas such as module decomposition, Morita theory,
and representation theory.

The development of matrix rings also finds relevance in fuzzy algebra, where extensions to
fuzzy rings and intuitionistic structures provide new perspectives for mathematical modelling

©8).

Matrix rings, in contrast, shift the focus to multi-dimensional generalisations of scalar
arithmetic. The ring M,(R) consists of all n x n matrices over a base ring R, and the
resulting algebraic structure introduces complexity through its typically non-commutative
multiplication. Matrix rings serve as algebraic models of linear transformations and find
applications in representation theory, module theory, and the classification of Artinian rings.
Their internal structure is rich and varied: for example, even when the base ring is com-
mutative, the matrix ring will almost always be non-commutative when n > 2. This makes
matrix rings ideal platforms for exploring phenomena unique to non-commutative algebra.

Historically, the development of matrix rings has deep connections with group representa-
tions and the study of central simple algebras. They exemplify several foundational results,
including the Artin-Wedderburn theorem, which classifies semi-simple rings as matrix rings
over division rings. Furthermore, matrix rings provide counterexamples to naive generali-
sations in ring theory: ideals are rarely generated componentwise, invertibility depends on
determinant conditions, and idempotent matrices reveal deep connections between algebra
and geometry via their ranks and eigenstructures.

In applications, matrix rings underpin algorithms in cryptographic protocols and coding
theory, particularly in schemes involving structured linear transformations and finite fields.
They also appear in quantum theory as rings of observables and operators acting on Hilbert
spaces. In homological algebra, matrix rings provide key examples for computing projective
resolutions, Tor and Ext functors, and developing notions like Morita equivalence. In com-
puter science, matrix rings are relevant in automata theory, finite state machines, and neural
network architectures.

Together, Boolean and matrix rings span the spectrum of algebraic behaviour—from the
minimalism of total idempotency and logical modelling, to the expressiveness and intricacy
of noncommutative multilinear structures.

The unified exploration of Boolean and matrix rings not only highlights their indepen-
dent algebraic characteristics but also reveals a deeper narrative about the flexibility and
universality of ring theory. By examining their shared and contrasting behaviours, we gain
insight into how algebraic principles can be tailored to encode both logic and linearity, further
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reinforcing the centrality of rings as the language of modern mathematics.

This work investigates the foundational aspects of Boolean and matrix rings, develops
novel results and characterisations, and highlights their complementary roles in abstract and
applied mathematics. Through structural analysis, examples, and original theorems, we aim
to deepen the understanding of these significant algebraic systems.

Definition 1 A ring (R,+,-) is a set R equipped with two binary operations:
(i) (R,+) is an abelian group (additive identity 0, additive inverse —a),
(ii) (R,-) is a semigroup (multiplication is associative),

(1ii) Multiplication is distributive over addition: a(b+ ¢) = ab + ac and (a + b)c = ac+ be
for alla,b,c e R.

Definition 2 A ring R is commutative if ab = ba for all a,b € R.

Definition 3 A ring R has unity or a multiplicative identity if there exists 1 € R such
thatl-a=a-1=a for alla € R.

Definition 4 Let R be a ring. An element a € R, a # 0, is called a zero divisor if there
exists a nonzero element b € R such that either

ab=0 or ba=0.
That is, a 1s a zero divisor if it annihilates some nonzero element of R under multiplication.
Definition 5 Let R be a ring. A nonempty subset I C R is called a left ideal of R if
(i) I is an additive subgroup of R, that is, for alla,b €I, a—be I,
(ii) for allr € R and a € I, we have ra € 1.

Similarly, I is called a right ideal if ar € I for alla €l andr € R.
If both conditions hold (i.e., ra € I and ar € I for allr € R, a € I), then I is called a
two-sided ideal or simply an ideal of R.)

Throughout this paper, R denotes a ring.
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2 Boolean Rings: Theory and Applications

Definition 6 A Boolean ring is a commutative ring R with identity in which every element
is idempotent, i.e., a> = a for all a € R.

These rings exhibit some unique and useful properties:

(i) Every Boolean ring is commutative.

)
(ii) For all a € R, we have —a = a; thus, every element is its own additive inverse.
(iii) The characteristic of any Boolean ring is 2, meaning a + a = 0 for all a € R.

)

(iv) Boolean rings correspond to Boolean algebras; in fact, the two structures are categori-
cally equivalent.

Example 7 The power set P(X) of a set X, with symmetric difference as addition and
intersection as multiplication, forms a Boolean ring.

Example 8 The ring Zs and its direct products, e.g., Zio X Zs, are classic ezamples.

Example 9 The ring Zs is a Boolean ring. Any direct product of copies of Za, such as 7%,
is also Boolean.

Theorem 10 FEvery Boolean ring is commutative and has characteristic 2.
Let a,b € R. Consider (a + b)> = a + b (since a + b € R). Expanding;
(a+b?=da’+ab+ba+b*=a+ab+ba+b
Comparing both sides:
a+b=a+ab+ba+b=ab+ba=0
So ab = —ba. But in a Boolean ring, & = —z for all #, since x + # = (0. Therefore:
ab= —ba =ba = ab = ba

So multiplication is commutative. Also, a + a = 0 for all a, so the ring has characteristic 2.

Converse of the above theorem is false.
While every Boolean ring has characteristic 2, the converse does not hold. That is, not
every ring of characteristic 2 is Boolean.

Example 11 The polynomial ring Z2|X| also has characteristic 2, but is not Boolean since,
for instance, the element X is not idempotent (X% # X ).

Example 12 Consider the ring My(Zs) of 2 X 2 matrices with entries from Zg. This ring
has characteristic 2 but is not Boolean. Qut of its 16 elements:
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(i) 8 elements are idempotent,
(ii) 6 elements are units (invertible),

(iii) 4 elements are nilpotent.
Here, 05 and I5 are included in the counts for both idempotents and nilpotents.
Result 13 Let U(R) denote the set of units (i.e., invertible elements) in the ring R.

An interesting and perhaps lesser-known property of Boolean rings is the following:

Theorem 14 If R is a Boolean ring, then U(R) = {1}.

Suppose u € U(R), so u has a multiplicative inverse u .

u? = w. Multiply both sides on the right by u™":

Since K is Boolean, we have

Thus, U(R) contains only the identity element 1.

Hence, a Boolean ring has exactly one unit: the multiplicative identity.

We now present some original results developed to explore additional structural properties
of Boolean rings.

Theorem 15 Let R be a finite Boolean ring. Then the sum of all distinct nonzero elements
of R is zero.

Let R be a finite Boolean ring. Since each element a € R satisfies a? = a, it follows that
a = —a. Hence, a +a = 0, i.e., each element is its own additive inverse.

Now consider the sum S = EaER\{D} a. Since every element is its own inverse and addition
is commutative, every term in this sum appears with itself:

at+a=0=5=0.

Theorem 16 Let R be a Boolean ring and let A,B € R. Then AB = A A B, where

multiplication corresponds to logical conjunction.

In a Boolean ring, multiplication is interpreted as set intersection in the ring of subsets
P(X). The idempotent property A% = A implies that AB = AN B = BN A, which satisfies
the definition of logical conjunction (A A B). Therefore, AB = AN B.

Theorem 17 Let R be a Boolean ring with more than two elements. Then every nonzero
element is a zero-diwvisor.
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Let a € R, a #0. Since a? = a, we have:

2

a(l—a)=a—-a"=a—-—a=0.

But a # 0 and 1—a # 0 (because a # 1), so @ and 1 —a are nonzero elements whose product
is zero. Thus, every nontrivial element is a zero-divisor.

These theorems highlight inherent limitations and symmetries within Boolean rings, par-
ticularly in finite settings. They provide deeper understanding of their algebraic behaviour
beyond the conventional definitions.

Theorem 18 Leta,b € R be distinct nonzero elements of a Boolean ring R. Then ab = aAb
and ab < a,ab < b in the Boolean algebra order.

In a Boolean ring, multiplication corresponds to logical conjunction (A). Hence, ab = aAb.
In Boolean algebras, a Ab < a and a Ab < b by definition of meet. Thus, ab < a and ab < b.

Theorem 19 FEvery Boolean ring with more than one element contains at least two nontrivial
idempotents: 0 and 1.

By definition, all elements of a Boolean ring are idempotent: a? = a. So 0 and 1 are

always present and satisfy 02 = 0, 12 = 1. If R has more than one element, then 0 # 1.
giving at least two distinct idempotents.

Theorem 20 FEvery Boolean ring is reduced, i.e., it has no nonzero nilpotent elements.

Suppose a € R is nilpotent: a" = 0 for some n > 0. In a Boolean ring, however, a®> = a

for all @ € R. Then a" = a for all n > 1. So if a” = 0, then a = 0. Hence, no nonzero
element can be nilpotent.

Theorem 21 FEvery finite Boolean ring is isomorphic to a finite direct product of copies of
ZLs.

Let R be a finite Boolean ring. Since every element is idempotent, R is a commutative
ring of characteristic 2 with a? = a for all a. Such rings are known to decompose as finite
products of fields Zs, using the structure theorem for finite commutative rings with identity
and all elements idempotent.

These theorems deepen the structural insight into Boolean rings by characterising their
internal logic and algebraic behaviour. They provide a clear bridge to lattice theory and
Boolean algebraic semantics in logic, computer science, and set theory.

Theorem 22 Let a € R be a nonzero element of a Boolean ring R. Then a(l —a) =0, and
a and 1 — a are orthogonal idempotents.

Since a? = a, we have:
2

a(l—a)=a—-a*"=a—a=0.

Thus, a and 1 — a multiply to zero. Furthermore, both @ and 1 — a are idempotent because
in Boolean rings, a’> =a = (1 —a)?=1—-2a+a? =1— 2a+a = 1 — a, using characteristic

2.
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Theorem 23 Let I be an ideal of a Boolean ring R. Then every element of I is idempotent
and I is closed under the operation = +— x”.

Since every element z € R satisfies 2 = z, every element of any subset, including I, is
idempotent. Hence, r € I = 2* =z € I.

Theorem 24 Let a,b € R be distinct nonzero elements in a Boolean ring. Then a 4+ b is
either zero or another nonzero element.

Since Boolean rings have characteristic 2, a 4+ b = 0 implies a = b, which contradicts
distinctness. Thus, a + b # 0 unless @ = b. Hence, the sum is either zero (only when a = b)
or a new nonzero element.

Theorem 25 Let R be a Boolean ring. Then every principal ideal (a) is generated by the
idempotent a itself.

Let a € R. Since a® = a, any product ra € (a) satisfies (ra)? = ra. Thus, every generator

a of a principal ideal is idempotent, and the ideal is closed under idempotents.

Theorem 26 Let (R,+,-) be a Boolean ring. Then the quotient ring R/I is also a Boolean
ring for any ideal I of R.

Suppose R is a Boolean ring. By definition, this means that for every a € R, we have
a’> = a (i.e., all elements are idempotent), and R is a ring (commutative with identity, by
standard convention in Boolean ring theory).

Let I be an ideal of R. Consider the quotient ring R/I = {a+ 1 | a € R}. We aim to
show that every element in R/I is idempotent, i.e., for all a + I € R/I, we must have

(a+D:=a+1

Indeed,
(a+D?=(a+Dla+1)=a’+ I

Since R is a Boolean ring, a® = a. Hence,

(a+ 1) =a+1I

Therefore, each element of R/I is idempotent. Since R/I inherits the ring structure from
R, and all its elements are idempotent, R/I is a Boolean ring.
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Boolean Ring RVa € R, a®> = a

ideal uotlent

7

uotlent Rin a+1 € a+ =a-+
Quotient Ring R/IVa+1I € R/I, (a+ I)? I

Ideal I c R

Since R is Boolean, for all

a € R, we have a® = a.

Then in the quotient ring
R/I(a+ 1% =a*+1=
a+ I = R/I is Boolean.

Figure 1: Quotient of a Boolean Ring is also Boolean

3 Matrix Rings: Structure and Non-commutativity

Definition 27 Let R be a ring. The set M, (R) of all n X n matrices with entries from R
forms a ring under matric addition and multiplication. This ring is called the matrixz ring
over K.

Result 28 (i) Non-commutativity: Matriz multiplication is generally non-commutative,
even if R is a commutative ring.

(i) Unit Element: The identity matriz I,, serves as the multiplicative identity.

(111) Ideals and Simplicity: M,(R) has no nontriwial two-sided ideals if R is o division
ring; thus, My(R) is a simple ring.

(iv) Structure Theory: Wedderburn's Theorem states that every simple Artinian ring is
isomorphic to a matriz ring over a division ring.

Example 29 The set M,(R) of 2 X 2 real matrices forms a non-commutative ring with unity
(1dentity matriz).

Proposition 30 M, (R) is a non-commutative ring with unity (if R has unity).

Matrix addition and multiplication are associative and satisfy distributivity. The identity
matrix acts as the multiplicative identity. Commutativity fails in general:

oo baf ol s o

The interplay between Boolean rings and logic, and matrix rings and linear algebra,
exemplifies the deep connection ring theory has with other mathematical disciplines. These
examples highlight the richness and diversity of ring-theoretic structures.
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Tllustration of Non-Commutativity in Matrix Rings

i Il

S e
AB BA

i e

i e

AB BA

Figure 2: Illustration of Non-Commutativity in Matrix Rings

Theorem 31 Let A € M,(F) be an idempotent matriz over a field F, i.e., A> = A. Then

the trace of A is equal to the rank of A.

Since A2 = A, all eigenvalues of A must satisfy A2 = X, so A = 0 or A = 1. Thus, the
trace (sum of eigenvalues) equals the number of 1s among the eigenvalues, which is the rank

of A, as only those contribute to a nonzero column space.

Theorem 32 Let A, B € M,(R) forn > 2. If A and B are not both scalar matrices and do

not commute, then AB # BA.

Choose two matrices with distinct, nonzero entries off the diagonal. Since matrix multi-
plication is noncommutative in general for n > 2, the multiplication order matters. A specific

counterexample:
11 10

Here, AB # BA, as direct calculation shows.

Theorem 33 Let R be a commutative ring. Then the center of M,(R), denoted Z(Mpy(R)),
consists of scalar matrices A, where A € R.




Let A € M,(R) commute with all matrices in M, (R). This implies A must be of the form
Al since only scalar matrices commute with the entire matrix ring. The commutativity of
R ensures scalar matrices suffice.

Theorem 34 Let F be a field. Then M,(F) has no zero divisors if and only if n = 1.

Forn =1, Mi(F) = F, which is a field and hence has no zero divisors. For n > 2, one can
find nonzero matrices A, B such that AB = 0, e.g., rank 1 matrices whose product collapses
due to incompatible ranges.

These theorems provide insight into matrix ring structure, eigenvalue behaviour, the
nature of commutativity, and conditions under which algebraic identities hold. Matrix rings
remain a rich ground for examples and counterexamples in non-commutative algebra.

Theorem 35 Let A, B € M,(R) be nilpotent matrices over a ring R. Then A+ B is not
necessarily nilpotent.

Let A and B be strictly upper triangular matrices in My (R):

01 0 0
A=l o= lo]
Then both are nilpotent (A% = B? = 0), but their sum A+ B = A is not nilpotent if A is not
strictly upper triangular (general counterexamples can be constructed in larger dimensions).

Theorem 36 Let R be a ring. Then a left (right) ideal of M, (R) need not be generated by
matrices with only left (right) ideal entries from R.

Ideals in M, (R) are typically matrix-based structures, not componentwise. For example,
in M3(R), the matrix with a single nonzero entry from a left ideal I C R might not itself gen-
erate a left ideal of My(R), unless additional matrix conditions are satisfied. This illustrates
the richer structure of matrix ideals.

Theorem 37 A matriz A € M, (R) over a commutative ring R is invertible if and only if
its determinant s a unit in R.

If det(A) € R is a unit, then A has an inverse given by det(A)~! - adj(A), where adj(A)
is the classical adjoint. Conversely, if A is invertible, then multiplying by A~! shows det(A) -
det(A™1) =1, so det(A) is a unit.

Theorem 38 Let A € M,(R) be nilpotent over a commutative ring R. Then tr(A) is nilpo-
tent (in particular, zero if R is a domain).

The trace of a nilpotent matrix is the sum of its eigenvalues. Since all eigenvalues of a
nilpotent matrix are zero (in an algebraic closure), the trace is zero or nilpotent in general.
If R is a domain, then tr(A)" = 0 implies tr(A) = 0.

These new results offer further insight into the algebraic and ideal-theoretic behaviour
of matrix rings. They are instrumental in understanding how properties like invertibility,
nilpotence, and ideal structure differ in matrix settings versus their scalar counterparts.
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Theorem 39 Let D € M,(R) be a diagonal matriz and O € M,(R) an off-diagonal matriz
(all diagonal entries zero). Then the commutator |[D,0] = DO — OD is again off-diagonal.

Matrix multiplication of a diagonal with an off-diagonal matrix shifts weights onto off-
diagonal positions. Subtracting these weighted matrices cancels diagonal influence, leaving
the result still off-diagonal.

k

H

Theorem 40 Let A € M, (R) be nilpotent. Then its minimal polynomial is of the form x
for some k < n.

By definition, a nilpotent matrix satisfies A* = 0 for some minimal k. The monic poly-
nomial z* is the smallest polynomial such that z¥(A) = 0, which satisfies the definition of
the minimal polynomial.

Theorem 41 Let A € My(R) satisfy A2 = A. Then A is similar over a commutative ring
with identity to a matriz of the form:

oo Do o b

These are the Jordan canonical forms for idempotent matrices over fields or rings where
similarity transformations exist. The eigenvalues of A must be 0 or 1, so the matrix is
diagonalizable into a combination of these basic idempotent blocks.

Theorem 42 Let A € M, (F) be idempotent over a field F'. Then rank(A) = tr(A).

The ecigenvalues of an idempotent matrix over a field are 0 or 1. The trace counts the
number of 1’s (i.e., the dimension of the image), which equals the rank.

Theorem 43 Let V = R™ and A € M,(R). Then V becomes a left R[x]-module under the
action f(x)-v = f(A)v, and cyclic submodules correspond to Krylov spaces.

The action of a polynomial f(x) on v € V defines a module structure with generator v,
since {v, Av, A%, .. } spans a cyclic submodule. This is the Krylov space generated by v.

Theorem 44 Let R be a ring and A = M, (R),B = M,(R). Then A® B = M;n(R) if
and only if R has suilable idempotlents allowing decomposilion.

If R admits orthogonal idempotents e. f such that e + f = 1, then one may construct
block matrix representations with zeros and identities along diagonal partitions, yielding
isomorphism.

These results expand the foundational understanding of matrix rings, demonstrating
structural, spectral, and module-theoretic features. The connections between idempotency,

nilpotency, rank, and module actions form essential tools in noncommutative algebra and
representation theory.
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12 01 21 01
Sl R I AR R

Figure 3: Matrix multiplication is generally noncommutative: AB # BA

[to » 1 0]
p=lp o] #=lo o] =7

Figure 4: An idempotent matrix in Ma(R): E? = E

CJo1 , [0 0
=l =)
Figure 5: A nilpotent matrix: A2 =0, but A # 0

These diagrams help visualise key matrix ring concepts: noncommutativity, idempotence,
and nilpotence.

4 Conclusion

The algebraic frameworks of Boolean rings and matrix rings offer profound insights into both
theoretical structures and real-world applications. Boolean rings, with their defining property
that every element is idempotent, provide a minimalistic yet powerful setting for modelling
logical operations and digital circuits. Their characteristic properties—commutativity, char-
acteristic two, and limited unit group—make them ideal for representing binary systems
in logic design and information theory. The exploration of their quotient structures, ideal
behaviour, and inherent symmetries highlights their conceptual elegance and categorical rel-
evance to Boolean algebras.

Matrix rings, on the other hand, present a rich non-commutative extension of ring theory.
Their study illuminates crucial aspects of linear transformations, module theory, and ideal
structures. With properties like the trace-rank equivalence for idempotents, nontrivial centre
characterisation, and criteria for invertibility and nilpotency, matrix rings serve as both the-
oretical models and computational tools. Their non-commutative behaviour and capacity to
encode higher-dimensional algebraic operations make them indispensable in representation
theory, quantum computation, and cryptographic constructions.
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Together, Boolean and matrix rings exemplify the diversity of ring-theoretic landscapes.

While one focuses on algebraic minimalism and logical consistency, the other enables struc-
tural depth and generalisation. The results presented enrich our understanding of these two
important classes of rings and reaffirm their lasting significance in both abstract algebra and
modern mathematical applications.
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